ROADLY speaking, "rust" can be classified into two categories:

(a) Surface rusting or corrosion which is non- or only very slightly active but which produces unsightly appearance.

(b) Active rusting or corrosion which is a continuing chemical reaction and which leads to "rust through" or penetration of steel panels.

Extensive overseas research has shown that although many factors affect corrosion, the fundamental effect is an electro-chemical reaction. This reaction will only continue to be active provided it is supported by: (i) metal to corrode; (ii) water; and (iii) air.

By examination of cars which have been in service both overseas and here in Australia it has been possible to develop a fairly clear picture of where the two types of corrosion listed above occur on the vehicle body. These examinations range from conducting field surveys along the coastal belts of Australia, to buying old model vehicles and cutting them open to determine the cause of "rust through" conditions.

The significant factors learnt from these investigations are:

(a) That the lower 4in. of the outer skin panels of body assemblies — particularly doors — is the area most likely to "rust through", due to free water being retained in the assembly or of moisture "wicking" back up the panels. Tests have shown that water will only "wick-up" about 3in. to 4in.

(b) Tightly enclosed areas capable of holding "road throw", e.g., behind fender reinforcements, are sites of "rust through".

(c) "Dry areas" of the body, e.g., upper areas of door pillars, roof panel, centre areas, inside body areas, luggage compartment, etc., may develop minor surface rust at an early date but the corrosion reaction does not continue.

(d) Curved upper surface panels can be the site of "rust through" due, apparently, to humidity condensation. Examples of these are upper door outer panels near the glass opening, curved edges of roof panels, nose end of engine hoods and trailing edges of boot lids.

What Ford does

As a result of investigations, Ford of Australia have developed a corrosion prevention program based broadly on the following points:

(a) Is the panel an exterior or "skin"
Battling rust is one of the Australian motor industry's most difficult problems.

LEFT: Like chicken on a giant spit, Austin 1800 rotates in chromic acid. **RIGHT:** GM-H's latest facility for rust battling.

Against rust

Panel and is it continually wet or capable of being wet?
(b) Is the panel in the lower body area and hence a possible structural panel?
(c) Is the panel "boxed in" and capable of collecting mud and dirt from "road throw"?
(d) Is the panel subject to humidity condensation?

Corrosion is best and most economically prevented by using two types of preventative primers: (a) sacrificial primers such as Zinc-Rich Welding primers; (b) barrier primers of the Alkyd type.

Applying these primers to the areas categorised above, the primer application is as follows:

1. **Body shell including doors**
 (a) Complete body is dipped in black Alkyd Primer to a depth which covers headlamp and tail-lamp openings and to a height approximately halfway up the door height.
 (b) All accessible interior body areas receive an epoxy primer and/or enamel spray coat during body paint operations to a film thickness of 1/1000th of an inch. This includes the door outer panels and centre of the roof panel, the inside of quarter panels under fenders, etc. It does not include the underside of dash panels, the upper inside of door pillars or the inside surface of door inner panels above the underbody dip line.

2. **Body components**
 (a) Doors: prior to the assembly of all doors the outer panel is coated with zinc-rich primer in a 4in. band across the lower edge, up each outer edge and a 5in. band across the top edge.
 (b) Boot lid and engine hood: prior to assembly of the inner to the outer panel, a 6in. band is applied to both inner and outer at the leading edge (engine hood) and trailing edge (boot lid).

On all of the above components the hem flange or clinch flange is given special treatment by applying a wet application of zinc primer immediately prior to the "clinch over" operation, which ensures that these critical seams have a primer sealed into them.

(c) Front fender panels: prior to assembly of the rear reinforcement to the outer panel, a zinc primer coating is applied to all faces of the reinforcement and to the enclosed area of the fender panel.

(d) Quarter panels: a 4in. band of zinc primer is applied to the lower edge for the whole length of the panel.
3. Other critical body areas
 (a) Door sills or rocker panels: the entire inside surfaces of these panels are coated with zinc-rich primer prior to assembly.
 (b) Roof panel and drip rail: the inside surface of the roof panel in the area covered by the reinforcement, i.e., an area approximately 3in. wide around entire outer edge, is zinc primer coated. The contact surfaces of the roof panel and drip rail are primed with zinc-rich primer prior to assembly.
 (c) Seat belt anchorages: the areas of the floor pan covered by the anchorages and the anchorages themselves are zinc primed prior to assembly.
 (d) Structural areas not covered by underbody dip: inside surfaces of front end structural members are zinc primed prior to assembly. This includes the entire inside surfaces of the air plenum chamber or cowl grille area.

4. Miscellaneous application
 Many areas of the body are prime coated prior to final paint operations, due to difficulty of applying spray primers on the completed body, e.g., mating faces of door hinges and pillars, rear edges of engine hoods, etc.

Thick paint
 The film thickness of the underbody dip primer is approximately 0.005in., and at this thickness the primer is required to pass 240 hours accelerated salt spray test.
 The film thickness of the zinc-rich primer is 0.015in., and while the product is required by specification to pass only 250 hours of accelerated salt spray test, actual tests show that it withstands many times this number of hours.
 The protection provided by lower body areas should be particularly noted. Here the zinc primer is supplemented by underbody dip primer. This application applies to skin panels and structural members. The use of heavy gauge metal in structural members also ensures long life body strength.
 While no special attention is given to the underside of dash panels and the inside of door pillars above the dip line, these areas are considered to be “dry areas”, and as such do not have active corrosion. Tests detailed previously support this assumption.

What BMC does
 BMC use a process called “electrocoating” to supplement their basic Rotodip rust-proofing treatment.
 The Rotodip method treats and paints complete car bodies. The electrocoating plant is used to paint small components not able to be treated on the huge Rotodip machine.
 The combined result provides complete rust-proofing of all painted components on BMC cars.
 The electrocoating installation cost $280,000 and was the first of its kind in Australia. It has been in operation since May 1966.
 Electrocoating is a similar process to electroplating. Metal is plated, rather than sprayed, with paint to give uniform and complete coverage, even inside tubes and other normally inaccessible parts.
 Bodies for all Australian-made BMC saloons — the Mini, Morris 1100 and Austin 1800 — are all treated on the $2 million Rotodip machine during manufacture. On this exclusive machine, the unpainted body shell and doors are submerged and rotated in a series of baths containing phosphates and primer. This treats and covers every metal surface, both inside and out, and prevents the onset of rust.
 The electrocoating plant paints small parts which cannot be treated by the
Electrocoating is a major advance in the body industry. It involves a dip process in which small sheet metal parts not welded to the body itself are treated with a rust converter. The converter is applied to the part, then the part is placed in a phosphating machine, then takes a thorough inspection of the paint on badly affected areas, and if there is light rust, the use of a rust and grease remover is suggested. If not, a special rust spray can be used for the treatment of very light surface rust that is taking place under the paintwork of any part of the car. It has the ability to penetrate into rusty areas and inhibit the rusting action and is therefore useful for reaching any inaccessible areas around the car.

BODY PANELS: It is generally accepted that owners pay more attention to rusting exterior panels than anything—obviously because of the effect on the resale value. The proper treatment is to strip off the paint on badly affected areas, convert the rust and respray. If only small areas are involved—such as chips and marks—we suggest you clean down the metal with rust and grease remover. The next step is to spot prime the area with a heavy duty rust-inhibiting primer. When dry it can be sprayed or touched up with a finishing coat of enamel.

CHROME: Any rusty spots can be treated with a rust and grease remover. The surface should be dry and then polish the chrome with a wax polish. It is necessary to wash the area with warm water and detergent to prevent any incompatibility between the wax and the remover.

The clean, highly polished metal surface can then be protected with a special clear gloss lacquer which is sprayed over the chrome to provide a highly polished rust-protective finish.

MONOFRAME AND CHASSIS: Rust in the structural parts of the car can, of course, be disastrous. To treat such rust, or to guard against it, is not very difficult. If the member is not fully enclosed, a rust spray can be used. If the member is enclosed, it is necessary to drill two holes at the top and two similar drain holes at the lowest point. Having done this, the drain holes should be plugged and filled with a rust and grease remover.

Allow to stand for an hour, then drain, replug the holes and fill with the remover. Again, stand for an hour, then drain.

(Continued on page 90)
RUST—AND YOU
(Continued from page 83)

The same materials can be used for several applications but the job must be repeated in six months' time.

MUFFLERS: Few cars have mufflers which last an appreciable time. The main cause is that considerable condensation of moisture occurs when a muffler cools down. Where possible, the muffler should be treated with a rust converter. After that it makes sense to coat the muffler with a high temperature resistant silver paint. This will help dissipate the heat and so reduce the condensation.

BATTERY AREA: Over-enthusiastic filling, or even over-charging, can cause the battery fluid to spill. When it does, the white, powdery deposit will be obvious. This powdery material will cause serious corrosion on the metal panels at a remarkable rate.

If, however, there are already signs of corrosion, remove the battery and the affected parts, then wash with a strong solution of ammonia, dry, then rinse with water. Once the metal is completely dry, paint with anti-corrosive paint.

Products available for the above jobs are: Meta-Kleen—rust and grease remover; Meta-Seal—metal seal product available in a spray pack; Ferro-pro Rust Converter—neutraliser; Ferro-Kote Flat—a heavy synthetic rubber-based coating; Ferro Protector—heavy duty rust-inhibiting primer.

RUST PROBLEMS
(Continued from page 83)

by a dip tank of special rust-inhibiting priming paint, and a primer bake oven. All these processes are continuous and automatic.

To move through the machine the unpainted car body is "skewed" on a long metal spit, which has a sprocket at one end. The sprocket runs on a toothed rack, so that the spit—and the body clamped to it—rotate as they move.

The first tank contains a heated alkali to remove oil and other contaminants. The second tank contains a cold-water rinse, and the third a hot-water rinse, to make sure the body is perfectly clean before it enters the phosphating tank.

In the phosphating section the spitted body is lowered into various tanks while rotating. At the same time high-pressure jets spray the solution so that every bare metal portion of the body is treated, both inside and outside. Phosphating is actually a conversion of the body steel surface so that if the paint surface is damaged accidentally during use, corrosion will not spread. It also acts as a bond between steel and paint.

The phosphating is followed by a hot-water rinse and then by a heated chromic acid rinse. The body completes two slow revolutions in each tank.

After phosphating, the body is dried in an oven. Then it is dipped and rotated in a 7000-gallon tank of primer, remaining there for 2.6 minutes. This means that every particle of bare metal receives a coating of paint. Excess paint drains away through special holes provided in body panels and other enclosed parts.

The painted body, still rotating, is baked in an oven for 30 minutes at 340 deg. F.

What GM-H does

New test procedures developed by GM-H at the Lang Lang Proving Ground have improved the effectiveness of Holden anti-corrosion production techniques.

These tests are designed to accelerate corrosion-inducing conditions.

The car is sprayed with salt water taken from Westernport Bay and is then driven for a period around the Proving Ground roads. It is then sprayed again with salt water and placed in a large, transparent soak tent. A warm, humid atmosphere is built up inside the tent which accelerates the corrosive conditions. This process is repeated a number of times over a period and the vehicle is closely examined and studied for any possible signs of corrosion.

GM-H has been working on rust-preventative measures over a number of years and the present "Rustgard" process, which provides highly effective corrosion protection, has been the result of an evolutionary process rather than a sudden change.

The treatment starts by coating key panel areas which could be subject to corrosion with a zinc-rich primer before
they are assembled. The outer door panels, for example, are pre-painted prior to assembly with the zinc-rich primer and the inner panel is then assembled to the outer panel and welded while the primer is still wet.

All panels and the basic body structure are then cleaned and degreased before applying a hot zinc phosphate coating. The cleaning process is essential to ensure adhesion to subsequent coatings and does not remove the zinc primer applied previously. The zinc phosphate inhibits the spread of any corrosion process away from an area which may have had the metal exposed by a scratch or other damage to the surface.

The body is then dipped into another underbody primer to provide maximum corrosion protection of the entire lower body of the vehicle. Further protection is then provided by corrosion-resistant primer and an oxide primer surfacer which also prepares a base for final paintwork. Plastisol and bituminous compounds are applied to keep out water and dust.

The entire vehicle is then wholly sanded and three final coats of “magic mirror” acrylic lacquer applied.

As we have seen, chrome looking anything but its characteristic gleaming self, and these areas of the automobile are chrome plated not only to produce a pleasing appearance, but to produce a high degree of resistance to rust. The new $2.3 million GM-H plating plant at Woodville, South Australia, utilises the highly advanced process which includes an additional coat, called “Dur-Ni” in the plating process, which increases the corrosion resistance to three times the level of the best quality chromium plating previously obtainable.

Although most corrosion prevention is directed towards protective coating on the metal surfaces, there are several design factors which have also proved to be highly successful in combating corrosion. The smooth, rounded interiors of the front fender is a design feature which prevents the build-up of mud packs which lead to corrosion. Smooth joints and rounded corners and prevention of entrapment areas are of high importance. The attaching of stainless steel mouldings to body panels by means of plastic clips has been instrumental in preventing rust on the exterior of the car.

However, regular cleaning of the vehicle cannot be overstressed as the most effective precaution against corrosion. Door drain holes must be kept clear to prevent water build-up; underside of fenders and underbody ledges must be thoroughly cleaned to remove mud deposits which retain moisture; washing and, if desired, polishing of the exterior paintwork will remove grime, dirt and air pollution—products which are detrimental to the prevention of corrosion. Abrasives must not be used in washing or polishing of the acrylic lacquer finish and chromework as the surface will be damaged.

BULLWORKER NOW HAS A BUILT-IN POWER METER!

LETS YOU SEE & MEASURE YOUR INCREASED STRENGTH AT A GLANCE

Just perfected at the Gert F. Kolbel Institute in Germany—the latest model Bullworker with BUILT-IN POWER METER can transform thin, weak arms into rippling, muscular pillars of strength; build broad powerful shoulders; turn a flat shallow chest into a deep, manly one, forge stomach fat into steel-hard muscle, thighs and calves made stronger and firmer—ALL IN JUST FIVE MINUTES A DAY.

Here's how the POWER METER works:

As you exercise your muscles compress the Bullworker, causing the red power glide to slide up a scientifically calibrated scale, registering the force exerted by your muscles. In this way, as the illustration shows, you'll be able to see how you've improved day by day, whilst you're actually doing the exercises. And if you follow carefully your Bullworker training instructions, the improved performance recorded by your POWER METER should be pretty remarkable.

WORLD'S FIRST EXERCISER GUARANTEED TO PRODUCE MEASURABLE RESULTS PRACTICALLY OVERNIGHT

You'll be astounded to see how fast your strength increases right from the very first day. Just check the reading on the Powermeter scale after each exercise and compare it with your performance the day before. By the end of just two weeks of training, your increased strength will have already effected changes in your body that you'll be able to see in a mirror, actually measure with a tape measure. We GUARANTEED it, or you pay nothing.

UNCONDITIONAL GUARANTEE

We're willing to make you this unconditional guarantee. The results you achieve in just two weeks must convince you that Bullworker is the fastest, easiest, most effective trainer you've ever seen, or just send it back and YOU WON'T OWE US A PENNY!

FREE ILLUSTRATED BOOK IN COLOUR

This free book explains how to achieve a Fit and Power-Packaged Body in only five minutes a day. Write for the 28 page full colour book at no obligation, and see for yourself how your muscular system can be developed to a peak of fitness.

NAME.

ADDRESS.

STATE. POSTCODE.

BULLWORKER SERVICE (AUS.) (DEPT. MM118)

130 PARRAMATTA ROAD, ASHFIELD, N.S.W., 2131

MODERN MOTOR — NOVEMBER 1968